

図 4-2-37 ケース⑪断層モデル(南海トラフの巨大地震)

⑧ Furumura et al. (2011)連動モデル

Furumura et al. (2011)の連動モデルの断層パラメータにより、計算した地盤変動量を 図 4-2-38 に示す。

図 4-2-38 Furumura et al. (2011)の連動モデル

⑨ Baba et al. (2005)東南海モデル、南海モデル、連動モデル

Baba et al. (2005)の東南海地震モデル、南海地震モデルおよび東南海地震・南海地震 の連動地震モデルの断層パラメータにより計算した地盤変動量を図 4-2-39~図 4-2-41 に示す。

図 4-2-39 Baba et al. (2005)の東南海モデル

図 4-2-40 Baba et al. (2005)の南海モデル

図 4-2-41 Baba et al. (2005)の連動モデル

3. 津波シミュレーションに用いる地形モデルの作成

3.1 地形データ

(高松市、坂出市)

地形データについて図 4-3-1~4-3-8 に示す。

-4000 -2000 0 2000 4000 図 4-3-3 270m メッシュ領域(270A)

図 4-3-4 90m メッシュ領域 (90A)

-4000 -2000 0 2000 4000 図 4-4 30m メッシュ領域 (30C)

-4000 -2000 0 2000 4000 図 4-3-7 10m メッシュ領域(10Y)

(さぬき市、東かがわ市) 地形データについて図 4·3·9~4·3·17 に示す。

-4000 -2000 0 2000 4000

図 4-3-9 2430m メッシュ領域 (2430A)

-400	0 -	-2000	Ó	2000	4000
図 4	-3-1	1 270	m × wi	シュ領域	(270A)

-4000 -2000 0 2000 4000 図 4-3-12 90m メッシュ領域(90A)

-4000	-2000	Ó	2000	4000
図 4-3	-13 90m	メッシ	/ュ領域	(90B)

-4000	-200	0	Ó	2000	4000
图 4-3	3-15	30m	n メッ	シュ領域	(30B)

図 4-3-16 10m メッシュ領域 (10A)

-4000	-20	000	Ó	2000	4000
図 4-3-	$\cdot 17$	10m	メッショ	1.領域	(10B)

3.2 構造物データ

構造物データについて図 4-3-18~4-3-22 に示す。 南海トラフの巨大地震モデル検討会において検討された震度分布・浸水域等に係るデータ を利用した。

(高松市、坂出市)

図 4·3·18 10m メッシュ領域(10F)の構造物データ。カラーは構造物の高さを意味する。

図 4-3-19 10m メッシュ領域(10Y)の構造物データ。カラーは構造物の高さを意味する。

図 4·3·20 10m メッシュ領域(10Z)の構造物データ。カラーは構造物の高さを意味する。

(さぬき市、東かがわ市)

図 4·3·21 10m メッシュ領域(10A)の構造物データ。カラーは構造物の高さを意味する。

図 4-3-22 10m メッシュ領域(10B)の構造物データ。カラーは構造物の高さを意味する。

4. 津波計算地点

時系列波形データの計算地点は、表 4-4-1、表 4-4-2 に示したとおり、DONET 観測点 51 地点(図 4-4-1 参照)、対象地域内の津波浸水想定地域の 32 地点、28 地点とする。 (高松市、坂出市)

Name		Lon(°)	Lat(°)	Nan	ne	Lon(°)	Lat(<u>)</u>
	KMA01	136.5570	33.8048		P001	34.37896	133.9038
	KMA02	136.6488	33.7524	K10F	P002	34.37961	133.9182
	KMA03	136.6037	33.6484		P001	34.33685	134,1638
	KMA04	136.4674	33.6781		P002	34.38704	134.1193
	KMB05	136.9264	33.4772		P003	34.37753	134.1126
	KMB06	136.9216	33.3584		P004	34,35911	134.0849
	KMB07	136.8072	33.3613		P005	34.35695	134.0722
	KMB08	136.8039	33.4664		P006	34.36285	134.0609
	KMC09	136.8313	33.0584		P007	34,35505	134.0523
	KMC10	136.9335	33.0533		P008	34.35676	134.0396
DONET	KMC11	136.7790	33.0033		P009	34.35333	134.0335
DONETT	KMC12	136.8188	33.1279		P010	34.356	134.0225
	KMD13	136.6903	33,2201	K10Y	P011	34.358	134.0085
	KMD14	136.5770	33.1727		P012	34.35648	134.0007
	KMD15	136.5631	33.2331		P013	34.36552	133,9869
	KMD16	136.5958	33,3045		P014	34.37342	133.9669
	KME17	136.4451	33.4850		P015	34.38027	133.9423
	KME18	136.3828	33,3860		P016	34.41033	134.1082
	KME19	136.2564	33,4459		P017	34.40787	134.1017
	KME20	136.3325	33,5444		P018	34.38751	134.0494
	KMC21	136,7417	32,9500		P019	34.39579	134.0429
	KME22	136,2700	33 3302		P020	34,41794	134 0583
	MRA01	134,7449	33,4085		P021	34,41905	134.0521
	MRA02	134.8641	33,3393		P001	34.3574	133.844
	MRA03	134 7691	33 2 4 9 0	K10Z	P002	34 3316	133 8532
	MRA04	134.6724	33,3205		P003	34.3547	133.8879
	MRB05	135.0667	33.3222		P004	34.3371	133.843
	MRB06	135.1698	33.2252		P005	34.3469	133.8663
	MRB07	135.0964	33.1755		P006	34.3543	133.8724
	MRB08	134,9869	33,2750		P007	34.3581	133.8842
	MRC09	135.4585	33.2280		P008	34.3504	133.8377
	MRC10	135.5250	33.1250		P009	34.359	133.8319
	MRC11	135.4122	33.0837				
	MRC12	135.3414	33.1752				
	MRD13	135.7553	33.1592				
	MRD14	135.8580	33.1356				
DONET2	MRD15	135.9584	33.1418				
	MRD16	135.8401	33.0299				
	MRD17	135.7142	33.0917				
	MRE18	135.7747	32.9270				
	MRE19	135.8335	32.8919				
	MRE20	135.7733	32.8013				
	MRE21	135.6668	32.8602				
	MRF22	135.2250	32.9880				
	MRF23	135.3084	32.8825				
	MRF24	135.1918	32.8541				
	MRF25	135.1538	32.8919				
	MRG26	134.5167	32.7615				
	MRG27	134.5996	32.7086				
	MRG28	134.5167	32.6260				
	MRG29	134 4333	32 6750				

表 4-4-1 時系列波形データ抽出点

⁽さぬき市、東かがわ市)

表 4-4-2 時系列波形データ抽出点

						1	
Na	me	Lon(°)	Lat(°)	Na	ame	Lon(°)	Lat(°)
	KMA01	136.5570	33.8048		P001	34.27871	134.3016
	KMA02	136.6488	33.7524		P002	34.26134	134.3317
	KMA03	136.6037	33.6484		P003	34.25675	134.3422
	KMA04	136.4674	33.6781		P004	34.25491	134.3541
	KMB05	136.9264	33.4772		P005	34.25295	134.3703
	KMB06	136 9216	33 3584	K10A	P006	34 26122	1343762
	KMB07	136 8072	33 3613		P007	3424159	134 4016
	KMB08	136 8039	33 4664		P008	34 22868	134 4115
	KMC09	136.8313	33.0584		P009	34,21892	134,4203
	KMC10	136 9335	33 0533		P010	34 21 351	134 4291
	KMC11	136 7790	33 0033		P011	34 20928	134 4395
DONET1	KMC12	136 8188	33 1279		P001	34 33685	134 1638
	KMD13	136 6903	33 2201		P002	34 32766	134 1726
	KMD14	136 5770	33 1727		P003	34 33575	134 182
	KMD15	136 5631	33,2331		P004	34 34313	134 1824
	KMD16	136 5958	33,3045		P005	34 35247	134 1844
	KME17	136///51	33 / 850		P006	3/13/706	13/10/3
		1363828	33 3960		D007	34 34688	134 2074
		126.2564	22.4450			24 27027	12/12/065
	KME20	136 3325	22 5/1/			24.27022	13/10015
		126 7/17	22.0500	NIOD	P010	24.04900	104.2210
		126.0700	22.9000			04.0090	104.2000
		104.7440	00.000Z			04.00002	104.2040
	MDAOO	104.7449	22 2202			04.01701	104.2017
		104.0041	00.0090			34.31110	104.2044
		104.7091	33.2490 22.2005			34.29300	104.2027
	MDD05	104.0724	33.3200			34.29007	104.2000
	MDDOG	105.0007	22.0222			24.20014	104.2792
		105.0064	00.1755		FUL/	04.27909	104.2002
		104.0000	33.1733				
	MDOOO	134.9809	33.2750				
	MRCU9	135.4585	33.2280				
		135.5250	33.1250				
		135.4122	33.0837				
	MRG12	135.3414	33.1752				
	MRD13	135.7553	33.1592				
		135.8580	33.1356				
DUNET2		135.9584	33.1418				
	MRD16	135.8401	33.0299				
	MRD17	135.7142	33.0917				
	MRE18	135.7747	32.9270				
	MRE19	135.8335	32.8919				
	MRE20	135.7733	32.8013				
	MRE21	135.6668	32.8602				
	MRF22	135.2250	32.9880				
	MRF23	135.3084	32.8825				
	MRF24	135.1918	32.8541				
	MRF25	135.1538	32.8919				
	MRG26	134.5167	32.7615				
	MRG27	134.5996	32.7086				
	MRG28	134.5167	32.6260				
	MRG29	134.4333	32.6750				

次項以降に、対象地域ごとに時系列波形データ、最大水位分布及び最大浸水深分布を数 例示す。 5. 参考文献

- 岩崎敏夫, 真野明, オイラーの座標による二次元津波遡上の数値計算、海岸工学講演会論 文集, Vol.26, 土木学会, pp.70-74, 1979.
- Okada, Y., Internal deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Am., 82, 1018-1040, 1992.
- 小谷美佐, 今村文彦, 首藤伸夫, GIS を利用した津波遡上と被害推定法, 海岸工学論文集, 第 45 巻, pp.356-360, 1998.
- 佐藤他,日本の地震断層パラメター・ハンドブック,鹿島出版会,1989.
- 南海トラフの巨大地震モデル検討会 第二次報告 津波断層モデル編 -津波断層モデルと 津波高・浸水域等について-,2012.

(http://www.bousai.go.jp/jishin/nankai/model/pdf/20120829_2nd_report01.pdf)

- Baba, T., and P.R. Cummins, Contiguous rupture areas of two Nankai earthquakes revealed by high-resolution tsunami waveform inversion, Geophys. Res. Lett., 32, L08304, doi:10.1029/004GL022320, 2005.
- Furumura, T., K. Imai, and T. Maeda, A revised tsunami source model for the 1707 Hoei earthquake and simulation of tsunami inundation of Ryujin Lake, Kyushu, Japan., J. Geophys. Res., v116, B02308, doi:10.1029/2010JB007918, 2011.

5. 津波予測システムの検証

1. はじめに	1
2. 内閣府モデル(2012)による本システムの検証	2
2.1 10F(坂出東)地域内の津波高さ予測	4
2.2 10Z(坂出西)地域内の津波高さ予測	8
2.3 10Y(高松)地域内の津波高さ予測	16
2.410A(東かがわ市)地域内の津波高さ予測	30
2.5 10B(さぬき市)地域内の津波高さ予測	40
3. 参考文献	53

津波予測精度の検証においては、内閣府(2012)のモデルの津波を利用する。まず、震源モ デルを仮定して擬似観測データを生成し、それを真の値として、本システム予測値と比較す る。ここでは、内閣府モデルを初期波源としたフォワード計算により、DONET 観測点での 海底水圧変動、各予測ポイントでの津波波形および陸上への浸水を計算し、DONET 観測点 での海底水圧変動データから本システムを用いて予測された各予測ポイントでの最大津波 高さ及び第1波到達時刻と、波源から直接計算された各予測ポイントでの最大津波高さ及 び第1波到達時刻を比較する。陸上への浸水についても同様に比較する。

2. 内閣府モデル(2012)による本システムの検証

最大クラスの地震に対して、本システムがどのように動作するかを検証するため、ここで は、内閣府(2012)の津波断層モデル(ケース3)を用いた。前章と同様の手順で、擬似観 測データを内閣府ケース3(2012)の津波断層モデルを用いて生成し、それを真の値とし て、本システム予測値と比較する。ここで用いた津波断層モデルを図5-1に示す。この波 源モデルから、津波増幅率データベースの構築で使用した同じ計算手法を用いてシミュレ ートした DONET 各観測点での海底静水圧変動を図5-2に示す。

この波源モデルによる、本システムの断層モデル絞込み結果を図 5-3 に示す。次項以降 では、この断層絞込み結果を元に本システムが提供する予測値について説明する。

【ケース③「紀伊半島沖~四国沖」に 「大すべり域+超大すべり域」を設定】

図 5-1 内閣府ケース3 (2012) の津波断層モデル

図 5-2 内閣府ケース3(2012)の津波断層モデルにより計算した DONET 観測点での静水圧変動の波形。

図 5-3 内閣府ケース3(2012)の津波断層モデルによる断層絞込み結果。赤四角や紫四 角は絞り込みの結果、棄却された断層モデルで、黒四角が予測に使用される候補となる断 層モデルを示す。

2.1 10F(坂出東)地域内の津波高さ予測

10F 地域内の予測2ポイントでの津波波形を図 5-4 に、10F 域の最大浸水深図を図 5-5 に示す。予測ポイントでの最大津波高さは0.78m、0.79m であった。

図 5-3の断層モデル絞込み結果を元に、津波を検知した DONET 観測点での水圧変化の 絶対値ピーク値と予測2ポイントにおける最大津波高さの相関図を図 5-6、5-7に示す。

この相関図から、本システムが提供する予測値は、0.71m,0.74m となった。各ポイント における計算値と予測値の比較は表 5-1 にまとめた。

本システムでは最大浸水図も合わせて提供される。最大浸水図は予測ポイントごとに提供され、図 5-6、図 5-7 の赤点のシナリオに対応した最大浸水図が表示される。例として、P002 で予測された 0.74m に対応するシナリオの最大水位分布を図 5-8 に、それによる最大浸水図を図 5-9 に示す。

図 5-4 内閣府(2012)が公表した津波断層モデルケース 10 により計算した 10F 地域内 の予測 5 ポイントにおける計算津波波形。

図 5-5 内閣府(2012)が公表した津波断層モデルケース3により計算した10F域の最 大浸水深図

図 5-6 図 5-3の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P001における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-7 図 5-3の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P002における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

		最大津波高さ		第1波到達時刻			
地点	制幣店(…)	システム	母羊(…)	1. 答(志(ふ)	システム	母共(学)	
	訂昇॥(m)	予測値(m)	残差(m)	計昇値(例)	予測値(秒)	残左(秒)	
P001	0.79	0.71	-0.08	11952	4935	-2916	
P002	0.78	0.74	-0.04	11898	4903	-2882	

表 5-1 計算値とシステム予測の最大津波高さ及び第1波到達時刻の比較

図 5-8 本システムによって選ばれたモデル (P002 に 0.74m の津波をもたらした断層モ デル、M8.5)。最大水位分布を表示。

図 5-9 本システムによる最大浸水予測

2.2 10Z(坂出西)地域内の津波高さ予測

10Z 地域内の予測 9 ポイントでの津波波形を図 5-10 に、10Z 域の最大浸水深図を図 5-11 に示す。予測ポイントでの最大津波高さは 0.74m~1.00m であった。

図 5-3の断層モデル絞込み結果を元に、津波を検知した DONET 観測点での水圧変化の 絶対値ピーク値と予測 9 ポイントにおける最大津波高さの相関図を図 5-12~図 5-20 に示 す。

この相関図から、本システムが提供する予測値は、0.63m~1.04m となった。各ポイントにおける計算値と予測値の比較は表 5-2 にまとめた。

本システムでは最大浸水図も合わせて提供される。最大浸水図は予測ポイントごとに提供され、図 5-12~図 5-20 の赤点のシナリオに対応した最大浸水図が表示される。例として、P004 で予測された 1.04m に対応するシナリオの最大水位分布を図 5-21 に、それによる最大浸水図を図 5-22 に示す。

図 5-10 内閣府(2012)が公表した津波断層モデルケース3により計算した10Z地域内の予測9ポイントにおける計算津波波形。

図 5-11 内閣府(2012)が公表した津波断層モデルケース3により計算した10Z域の最 大浸水深図

図 5-12 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク 値と地点 P001 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選 択される断層モデル。

図 5-13 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク 値と地点 P002 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選 択される断層モデル。

図 5-14 図 5-3の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク 値と地点 P003における最大津波高さの相関図。赤丸は本システムによる津波予測にて選 択される断層モデル。

図 5-15 図 5-3の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク 値と地点 P004 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選 択される断層モデル。

図 5-16 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク 値と地点 P005 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選 択される断層モデル。

図 5-17 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク 値と地点 P006 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選 択される断層モデル。

図 5-18 図 5-3の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク 値と地点 P007における最大津波高さの相関図。赤丸は本システムによる津波予測にて選 択される断層モデル。

図 5-19 図 5-3の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク 値と地点 P008 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選 択される断層モデル。

図 5-20 図 5-3の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク 値と地点 P009における最大津波高さの相関図。赤丸は本システムによる津波予測にて選 択される断層モデル。

		最大津波高さ		第1波到達時刻			
地点		システム	建羊(m)	計算(法)(小)	システム	, 残差(秒)	
	訂昇恒(III)	予測値(m)	%左(111)	司昇恒(砂)	予測値(秒)		
P001	0.79	0.70	-0.09	12220	5358	-6862	
P002	0.99	1.02	0.03	8799	5502	-3297	
P003	0.88	0.80	-0.08	12085	5275	-6810	
P004	1.00	1.04	0.04	8786	5418	-3368	
P005	0.92	0.88	-0.04	8951	5395	-3556	
P006	0.88	0.81	-0.07	12091	5307	-6784	
P007	0.87	0.77	-0.10	12087	5265	-6822	
P008	0.80	0.73	-0.07	12216	5433	-6783	
P009	0.74	0.63	-0.11	12311	5496	-6815	

表 5-2 計算値とシステム予測の最大津波高さ及び第1波到達時刻の比較

図 5-21 本システムによって選ばれたモデル (P004 に 1.04m の津波をもたらした断層モ デル、M8.5)。最大水位分布を表示。

図 5-22 本システムによる最大浸水予測
2.3 10Y(高松)地域内の津波高さ予測

10Y 地域内の予測 20 ポイントでの津波波形を図 5-23 に、10Y 域の最大浸水深図を図 5-24 に示す。予測ポイントでの最大津波高さは 0.68m~1.08m であった。

図 5-3の断層モデル絞込み結果を元に、津波を検知した DONET 観測点での水圧変化の 絶対値ピーク値と予測 20 ポイントにおける最大津波高さの相関図を図 5-25~図 5-44 に 示す。

この相関図から、本システムが提供する予測値は、0.69m~1.08m となった。各ポイント における計算値と予測値の比較は表 5-3 にまとめた。

本システムでは最大浸水図も合わせて提供される。最大浸水図は予測ポイントごとに提供され、図 5-25~図 5-44 の赤点のシナリオに対応した最大浸水図が表示される。例として、P001 で予測された 1.06m に対応するシナリオの最大水位分布を図 3-6-4-45 に、それによる最大浸水図を図 5-46 に示す。

図 5-23 内閣府(2012)が公表した津波断層モデルケース3により計算した10Y地域内の予測20ポイントにおける計算津波波形。

図 5-24 内閣府(2012)が公表した津波断層モデルケース3により計算した10Y域の最 大浸水深図

図 5-25 図 5-3の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク 値と地点 P001における最大津波高さの相関図。赤丸は本システムによる津波予測にて選 択される断層モデル。

図 5-26 図 5-3の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク 値と地点 P002 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選 択される断層モデル。

図 5-27 図 5-3の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク 値と地点 P003における最大津波高さの相関図。赤丸は本システムによる津波予測にて選 択される断層モデル。

図 5-28 図 5-3の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク 値と地点 P004における最大津波高さの相関図。赤丸は本システムによる津波予測にて選 択される断層モデル。

図 5-29 図 5-3の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク 値と地点 P005における最大津波高さの相関図。赤丸は本システムによる津波予測にて選 択される断層モデル。

図 5-30 図 5-3の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク 値と地点 P006 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選 択される断層モデル。

図 5-31 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P007 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-32 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P008 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-33 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P009 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-34 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P010 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-35 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P011 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-36 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P012 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-37 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P013 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-38 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P014 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-39 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P015 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-40 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P016 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-41 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P017 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-42 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P018 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-43 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P019 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-44 図 5-3の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P020 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

地点	Į	最大津波高高	ţ	第1波到達時刻		
	計算値 (m)	システム 予測値 (m)	残差(m)	計算値 (秒)	システム 予測値 (秒)	残差(秒)
P001	1.04	1.06	0.02	10240	4366	-5874
P002	1.08	1.08	0.00	10231	4441	-5790
P003	0.98	1.04	0.06	10453	4695	-5758
P004	0.97	1.03	0.06	10446	4675	-5771
P005	0.89	0.99	0.10	10512	4675	-5837
P006:	0.94	1.04	0.10	10554	4735	-5819
P007	0.97	1.04	0.07	10672	4750	-5922
P008	0.92	1.00	0.08	10699	4764	-5935
P009	0.98	1.06	0.08	10770	4772	-5998
P010	0.97	1.04	0.07	10904	4744	-6160
P011	0.98	1.05	0.07	10983	4726	-6257
P012	0.95	1.01	0.06	11166	4699	-6467
P013	0.89	0.93	0.04	11478	4709	-6769
P014	0.83	0.85	0.02	11968	4750	-7218
P015	0.97	1.08	0.11	10191	4081	-6110
P016	0.89	0.95	0.06	10331	4264	-6067
P017	0.84	0.92	0.08	10532	4559	-5973
P018	0.77	0.81	0.04	10906	4552	-6354
P019	0.75	0.77	0.02	10539	4246	-6293
P020	0.68	0.69	0.01	10831	4367	-6464

表 5-3 計算値とシステム予測の最大津波高さ及び第1波到達時刻の比較

図 5-45 本システムによって選ばれたモデル (P001 に 1.06m の津波をもたらした断層モ デル、M8.5)。最大水位分布を表示。

図 5-46 本システムによる最大浸水予測

2.4 10A (東かがわ市)地域内の津波高さ予測

10A 地域内の予測 11 ポイントでの津波波形を図 5-47 に、10A 域の最大浸水深図を図 5-48 に示す。予測ポイントでの最大津波高さは 0.68m~1.08m であった。

図 5-3の断層モデル絞込み結果を元に、津波を検知した DONET 観測点での水圧変化の 絶対値ピーク値と予測 11 ポイントにおける最大津波高さの相関図を図 5-49~図 5-50 に 示す。

この相関図から、本システムが提供する予測値は、0.98m~1.46m となった。各ポイント における計算値と予測値の比較は表 5-4 にまとめた。

本システムでは最大浸水図も合わせて提供される。最大浸水図は予測ポイントごとに提供され、図 5-49~図 5-59 の赤点のシナリオに対応した最大浸水図が表示される。例として、P001 で予測された 0.98m に対応するシナリオの最大水位分布を図 3-6-4-60 に、それによる最大浸水図を図 5-61 に示す。

図 5-47 内閣府(2012)が公表した津波断層モデルケース3により計算した10A地域内の予測11ポイントにおける計算津波波形。

図 5-48 内閣府(2012)が公表した津波断層モデルケース3により計算した10A域の最 大浸水深図

図 5-49 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P001 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-50 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P002 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-51 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P003 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-52 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P004 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-53 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P005 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-54 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P006 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-55 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P007 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-56 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P008 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-57 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P009 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-58 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P010 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-59 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P011 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

地点	最	と大津波高さ	ξ.	第1波到達時刻			
	計算値 (m)	システム			システム	残差(秒)	
		予測値 (m)	残差(m)	計算値(秒)	予測値(秒)		
P001	0.68	0.98	-0.3	5407	2510	-2897	
P002	0.77	0.98	-0.21	5140	1633	-3507	
P003	0.76	1.01	-0.25	5089	1429	-3660	
P004	0.77	1.05	-0.28	5056	1395	-3661	
P005	0.76	1.09	-0.33	4998	1308	-3690	
P006	0.67	0.91	-0.24	4944	1522	-3422	
P007	0.88	1.19	-0.31	4644	1096	-3548	
P008	1.08	1.46	-0.38	4588	1020	-3568	
P009	0.99	1.29	-0.3	4554	782	-3772	
P010	0.92	1.21	-0.29	4522	709	-3813	
P011	0.85	1.19	-0.34	4490	651	-3839	

表 5-4 計算値とシステム予測の最大津波高さ及び第1波到達時刻の比較

図 5-60 本システムによって選ばれたモデル (P001 に 0.98m の津波をもたらした断層モ デル、M8.5)。最大水位分布を表示

図 5-61 本システムによる最大浸水予測

2.5 10B(さぬき市)地域内の津波高さ予測

10B 地域内の予測 17 ポイントでの津波波形を図 5-62 に、10B 域の最大浸水深図を図 5-63 に示す。予測ポイントでの最大津波高さは 0.75m~2.13m であった。

図 5-3の断層モデル絞込み結果を元に、津波を検知した DONET 観測点での水圧変化の 絶対値ピーク値と予測 17 ポイントにおける最大津波高さの相関図を図 5-64~図 5-80 に 示す。

この相関図から、本システムが提供する予測値は、0.86m~2.66m となった。各ポイント における計算値と予測値の比較は表 5-5 にまとめた。

本システムでは最大浸水図も合わせて提供される。最大浸水図は予測ポイントごとに提供され、図 5-64~図 5-80 の赤点のシナリオに対応した最大浸水図が表示される。例として、P001 で予測された 2.51m に対応するシナリオの最大水位分布を図 3-6-4-81 に、それによる最大浸水図を図 5-82 に示す。

図 5-62 内閣府(2012)が公表した津波断層モデルケース3により計算した10B地域内の予測17ポイントにおける計算津波波形。

図 5-63 内閣府(2012)が公表した津波断層モデルケース3により計算した10B域の最 大浸水深図

図 5-64 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P001 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-65 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P002 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-66 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P003 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-67 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P004 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-68 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P005 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-69 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P006 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-70 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P007 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-71 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P008 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-72 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P009 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

73 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値と地 点 P010 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択され る断層モデル。

図 5-74 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P011 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-75 図 5-3の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P012 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-76 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P013 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-77 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P014 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-78 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P015 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-79 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P016 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

図 5-80 図 5-3 の断層絞込み結果を元に、DONET 観測点での水圧変化の絶対値ピーク値 と地点 P017 における最大津波高さの相関図。赤丸は本システムによる津波予測にて選択 される断層モデル。

地点	最大津波高さ			第1波到達時刻			
	計算値 (m)	システム		計算値(秒)	システム	残差(秒)	
		予測値	残差(m)		予測値		
		(m)			(秒)		
P001	2.13	2.51	-0.38	6545	2146	-4399	
P002	2.2	2.66	-0.46	6537	2198	-4339	
P003	2.12	2.55	-0.43	6546	2246	-4300	
P004	2	2.38	-0.38	6556	2353	-4203	
P005	1.46	1.69	-0.23	6406	3324	-3082	
P006	1.38	1.75	-0.37	6298	3240	-3058	
P007	1.43	1.81	-0.38	6272	3213	-3059	
P008	0.98	1.18	-0.2	9677	3633	-6044	
P009	0.75	0.86	-0.11	5775	3453	-2322	
P010	0.76	0.88	-0.12	5753	3472	-2281	
P011	0.84	1.04	-0.2	5495	3211	-2284	
P012	1.11	1.57	-0.46	5522	3285	-2237	
P013	1.39	1.86	-0.47	5563	3257	-2306	
P014	1.55	2.13	-0.58	5581	2364	-3217	
P015	1.37	1.93	-0.56	5561	2395	-3166	
P016	0.9	1.35	-0.45	5436	2531	-2905	
P017	0.88	1.34	-0.46	5411	2503	-2908	

表 5-5 計算値とシステム予測の最大津波高さ及び第1波到達時刻の比較

図 5-81 本システムによって選ばれたモデル (P001 に 0.98m の津波をもたらした断層モ デル、M8.5)。最大水位分布を表示

図 5-82 本システムによる最大浸水予測

3. <u>参考文献</u>

<u>南海トラフの巨大地震モデル検討会 第二次報告</u>津波断層モデル編 -津波断層モデルと <u>津波高・浸水域等について-,2012</u>.

(http://www.bousai.go.jp/jishin/nankai/model/pdf/20120829_2nd_report01.pdf)

Baba, T., and P.R. Cummins, Contiguous rupture areas of two Nankai earthquakes revealed by high-resolution tsunami waveform inversion, Geophys. Res. Lett., 32, L08304, doi:10.1029/004GL022320, 2005.