平成 30 年度 香川県地域産業人材創出支援事業

香川県内大学・高専連携人材育成システム

21世紀源内ものづくり塾

平成30年 修了発表会

連携機関:香川県 徳島文理大学(香川校) 香川高等専門学校

【運営事務局】国立大学法人香川大学

ご挨拶

平成 20 年 10 月、香川大学が開設した「21 世紀源内ものづくり塾(以下、源内塾)」は、平成 25 年度から香川県産業成長戦略の地域産業人材創出支援事業として、香川県との共同事業として継続的に運用しており、本年で 10 年の節目を迎えました。

源内塾は、香川におけるものづくり企業の明日を担う人材を育成するため、単に技術にかかわるだけでなく、マーケティングやビジネスプランの作成等、経営マネジメントも養成する実践的なプログラムにより、「売れるものづくり」を企画・実践できる若手リーダーの育成を目指しています。

また、育成する体制も、「地域で必要な人材は、自前で育成する」を理念に掲げ、 香川大学を中心に、香川県内の大学、高専、自治体とも連携し、香川の産学官の総力 を結集させて育成します。

育成にあたっては、「座学」、「課題研究」、「技術経営」といった2年間の育成システムを中心に、「自ら学ぶ場」の提供を通じ、受講者が主体的に取り組むことを基本にしています。

具体的には、座学による集合教育での知識の醸成、マンツーマン方式の指導教員との面談、ゼミ形式のグループディスカッション、先進技術に触れる機会等、多様な育成手法を用いることで課題抽出力とそれらを解決するスキルを身につけ、2年間の育成課程の修了時には「ものづくりマイスター」の称号を授与します。

受講中の2年間では、同期生同士の業種を越えた交流、修了後には同窓会となる「源内OB会」での修了生との交流を通じ、地域内での幅広い業種が集う人的ネットワークが創出されることも期待します。

源内塾は、このような育成システムと場づくりにより、社会が求める人材を、地域と 共に育成し、香川県の産業の発展に貢献していきたいと考えています。

21世紀源内ものづくり塾

塾長 永冨 太一

プログラム

1. 開会式 (13:00~13:20)

主催者挨拶

香川大学

理事

片岡 郁雄

香川県商工労働部

部長

浅野 浩司

2. 修了発表会 (13:20~14:40)

(1) 29 年度生によるビジネスプラン発表

審査員

(▲審査員長)

▲源内塾 塾長

永冨 太一

・香川県商工労働部産業政策課 主幹

河井 治信

・株式会社スワニー 代表取締役社長

板野 司

・富士フイルム株式会社 R&D 統括本部 イノベーションアーキテクト

中村 善貞

・香川大学名誉教授(元塾長)

三原 豊

(2)全体講評

富士フイルム株式会社 R&D 統括本部 イノベーションアーキテクト

中村 善貞

休憩

3. ものづくり講演会(14:50~15:50)

人生のターニングポイントと経営観

株式会社スワニー

代表取締役社長

板野 司

4. 修了式(15:50~16:10)

(1) 審査結果発表および称号付与

香川大学産学連携・知的財産センター

センター長

永冨 太一

(2) 塾長挨拶

源内塾 塾長

永冨 太一

2. 修了発表会·修了式

(発表趣旨)

- ・ この発表は、源内塾の育成プログラムのうち「MOT(技術経営)事例研究」の締めくくりとして行うものです。
- ・源内塾では、「売れるものづくり」の企画・開発ができる人材の育成を目指しており、 MOT教育として、学問的な意義付けを学習するMOT基礎から個別企業の取り組 みを調査・分析するMOT事例研究まで、体系的なプログラムを編成しています。
- ・特に、実践面重視の観点から、塾生にはそれぞれが考えた「商品」をテーマとして ビジネスプラン作成にチャレンジしてもらいます。本日はその成果を修了予定者に 発表してもらいます。
- ・発表内容は、あくまでも塾生がスキルアップを目指し作成した個人的なプランであり、個別企業の事業活動等とは特に関係ありません。

発表プログラム ※発表時間・・・1人10分(発表8分 質疑2分)

	タイトル	発表者	^° −ジ
(1)	小型ボイラ用送風機の高性能化開発・事業化	株式会社サムソン 衛藤 優希	4
(2)	橋梁損傷診断システムの開発および事業化	株式会社四国総合研究所 小川口 深雪	6
(3)	COF カップリング技術を用いた機能性分子担 体のアプリケーション開発と工業化	高松帝酸株式会社 竹中 麻朗	8
(4)	セルロースナノファイバーを使用した高機能 ゴムホースの事業化	大同ゴム株式会社 佃 慎悟	10
(5)	空調機向けアスファルト制振材の事業化	七王工業株式会社 細川 晃平	12
(6)	延伸製法を利用した高強度多層フィルムの事 業化計画	四国化工株式会社 松浦 亮	14

小型ボイラ用送風機の 高性能化開発·事業化

2019年3月5日

1

3

株式会社 サムソン 衛藤優希

源内ものづくり塾 10期生

SAMSOLUTION

目次

- 1. 会社概要
- 2. 事業背景
- 3.市場予測
- 4. ベネフィット
- 5.ビジネスモデル
- 6.ロードマップ
- 7. 収支予測

2

4

SAMSOLUTION

1.会社概要

社 名: 株式会社サムソン

所在地 : 香川県観音寺市八幡町三丁目4番15号

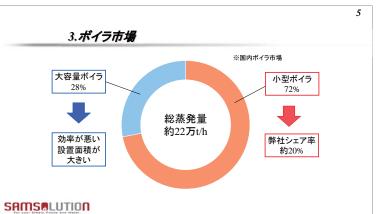
創業: 1945年11月 資本金 : 2億5000万円 従業員数: 360名

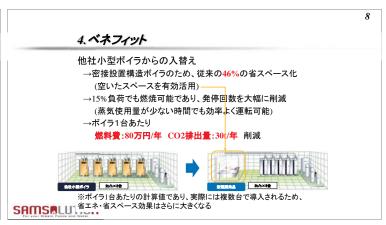
ポイラ、食品加工機器、水処理機器、コージェネ関連機器、 冷熱機器、電子応用機器、工業用薬品などの開発・製造・ 販売・設置工事および、保守管理 事業内容:

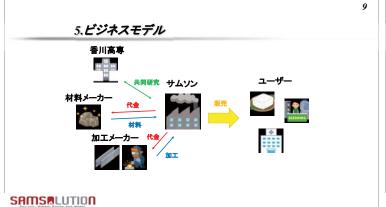
SAMSALUTION

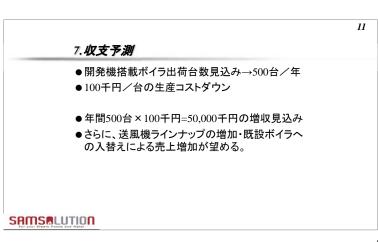
2. 事業背景

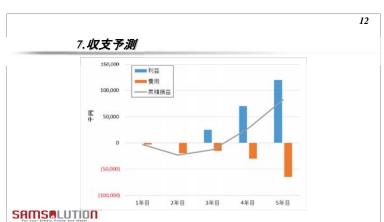
- ●ボイラとは燃料の熱量の最大98%を蒸気に変換 して、その熱量を有効に活用することができる。
- ●町の豆腐屋さんやクリーニング店、飲食店の厨房、 製薬会社や印刷工場、ビール工場などあらゆる 産業分野で熱源として利用されている。
- ●生産状況に応じた適切な熱量(蒸気)の供給が必 要とされる。






SAMSALUTION





橋梁損傷診断システムの開発 および事業化

2019年 3月 5日 21世紀源内ものづくり塾 10期生 株式会社 四国総合研究所 小川口 深雪

もくじ

- 会社概要
- ・事業背景
- ・問題点
- 市場規模
- ・デジタル画像相関法(DIC)
- 診断システム概要
- ・ベネフィット
- ・ビジネスモデル
- ・ロードマップ
- 収支計画

会社概要

- ■社 名 株式会社 四国総合研究所
- ■所在地 高松市屋島西町2109番地8
- ■設 立 昭和62年10月1日(四国電力㈱より分離、独立)
- ■資本金 1億円
- ■社員数 128人
- ■事業内容(研究受託)

電気事業に関する調査、研究、開発 土木・地質、情報・通信、パイオ分野等における 調査、研究、開発業務の受託およびコンサルティング

(商品開発)

タワーパリヤー (送電鉄塔用長寿命塗装システム) M. EYEチェッカー (コンクリート構造物用鉄筋非破壊診断装置) など

参照四国総合研究所

事業背景

■橋梁の歴史

日本最古の橋(御木のさ小橋)倒木を利用 日本最初の石造りアーチ橋 (眼鏡橋)

> 日本最初の鉄筋コンクリート橋(第11号橋) 高度経済成長期に橋梁が多数建設

できるだけ早く・安く造ることが求められていた時代

中央自動車道笹子トンネル上り線で天井板落下事故(天井板は設置から35年) 2012

2013 国土交通省が「総点検実施要領」策定

道路法施行規則改正 2014

> 5年に1度の近接目視点検 メンテナンスの時代

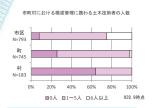
15000 15000 12000

9000

香川徳島県境 無名橋の落橋 (200

問題点①お金がない ■土木費は年々減少し、20年間で約3分の1程度に 土木費 (香川県) 歳出の推移 土木普 (香川県) 内訳 (億円) 1,400 1,200 1,000 橋梁・トンネル等の点検 約1/3倍に減少 長寿命化修繕計画の更新 (約1億5000万円) 土木費の約0.3% 公共土木施設長寿命化事業

道路事業

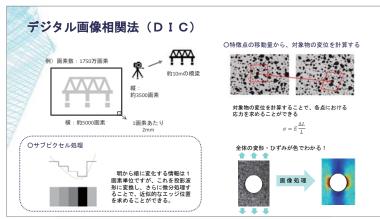

・点検業務のコスト削減要請

・目視点検に替わる新技術への期待がある!

香川県の財政状況より

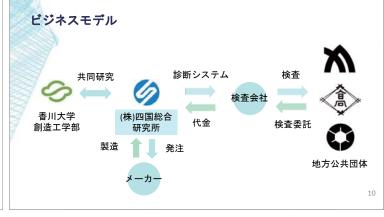
問題点②技術者がいない

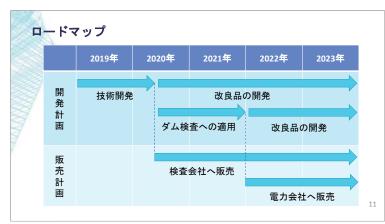
■橋梁管理に携わる土木技術者は、村では ■定期点検費用概算 60%、市区部でも10%は0人



全国の橋梁数 約73万橋 1橋あたりの点検費用 39万円※ ※川西寛:市町村の橋梁点検業務の費用分析と対策について 73万橋×39万円÷5年 ≒570億円╱年 ※参考 香川県所有の橋梁数 1476橋 (H29.10) 香川県にある橋梁数 5730橋 (H25.4)

目視点検の代わりに、画像で損傷具合を 判定できたらいいな~


・少人数でインフラを管理 ・誰でも簡単にできる点検作業 にする必要がある! 市場予測


香川県平成30年度当初予算より作成

COFカップリング技術を用いた

機能性分子担体のアプリケーション開発と工業化

2019年3月5日(火)

21世紀源内ものづくり塾第10期生

高松帝酸株式会社 竹中 麻朗

目次

- 会社概要 1.
- 2. 技術概要1: フッ素ガス処理とは
- 技術概要2: COFカップリング技術とは
- 開発目標 4.
- 5. ビジネスモデル
- 技術開発の状況 6.
- 7. 市場
- ロードマップ 8.
- 収支予測

2/12

会社概要

高松帝酸株式会社

- ・ 昭和25年5月創業
- · 香川県高松市(本社)
- 従業員約180名
- 資本金9.950万円

本社&高松事業所 多度津事業所 今治営業所 徳島営業所 エヒメ酸素株 松山営業所 新居浜事業所 オルタス高知事業所 高知営業所—— 株高亜溶材

事業分野 各種高圧ガスの製造・販売を主軸に事業を展開

- ・フッ素ガス表面処理事業
- ・ 産業用ガス、機械・資材の販売
- 医療事業

3/12

フッ素ガス処理とは

フッ素ガス

フッ素ガス(F。)を当てて、物質の表面特性を劇的に変える技術

直接フッ素化 耐熱性、耐薬品性の向上 フロロ親水化

高分子材料

濡れ性、密着性の向上

2000年から事業化スタート

フッ素ガス処理で得られる表面特性の独自性・特異性で 競合技術の生じにくい独創的な製品を数多く展開

4/12


COFカップリング技術とは

高度な機能性を簡便に付与できる新しい表面カップリング技術

汎用樹脂を表面処理

表面を高反応性化

機能性分子と化学結合

汎用プラスチック (ポリエチレン、ポリプロピレン)

反応性に乏しい材料も… 高機能材料に!

本技術の特徴、技術優位性

- ① 単純気相処理であり、一般的な表面処理技術とは異なる! あらゆる形状(粉体、不織布)に対して、均一に表面処理できる!
- ②フッ素ガスの極めて高い反応性を利用! 室温下においても、 ガスを当てるだけで表面が高反応性化し、簡便に分子を導入可!

開発目標

COFカップリング技術を用いた 機能性分子担体のアプリケーション開発と工業化

基盤技術

高松帝酸(株) フッ素ガス処理

担体販売会社 COFカップリング可能な 機能性分子の設計

キーワード

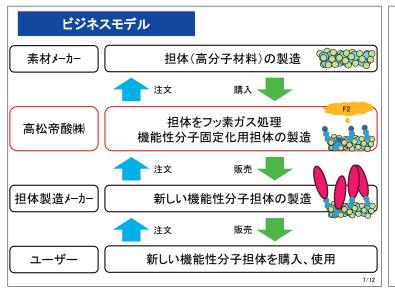
COFカップリングにより 特異性能を持つ機能性分子をプラスチックへ固定化

新しい機能性分子担体

制品

リサイクル可能、製品混入防止 分離、抽出 分子触媒、酵素

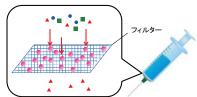
高機能性表面


適応分野

環境・エネルギー

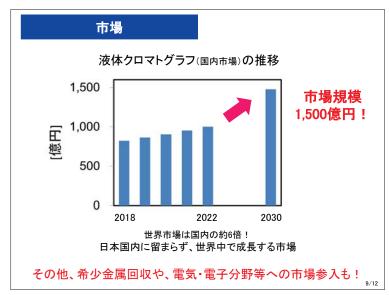
環境浄化、排水処理 希少金属回収

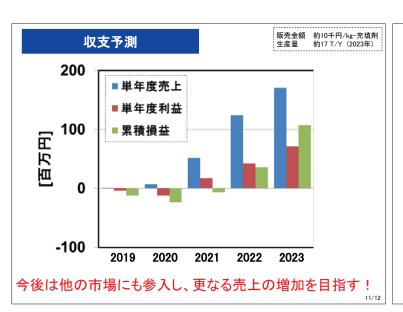
医療、新素材開発 医薬品中間体の合成


電気·電子分野 6/12

技術開発の状況

液体クロマトグラフ(分析装置)等への展開可能性


- ① 機能性分子を高密度に担持した機能性担体の開発
 - ・これまで分離困難であった混合物を分離可能に!
 - ・担体をフィルター化、粒化し、分析装置へ組込み可能に!



② サンプル・ワーク用粉体処理試作装置の稼働開始 固定化用担体のサンプルを市場へ提供可能に!

8/12

ご清聴ありがとうございました

高松帝酸株式会社

12/12

セルロースナノファイバーを使用した高機能 ゴムホースの事業化

平成31年 3月5日

源内ものづくり塾 10期生

大同ゴム株式会社 佃 慎悟

目次

1.会社概要・・・・・3 2. 事業背景・・・・・4 3.製品特徴・・・・・5 4. 使用背景・・・・・6 5.顧客ベネフィット・・・7 6.市場性・・・・・8 7.ビジネスモデル・・・・9 8.ロードマップ・・・・10 9.売上・収支予測・・・・11

2.事業背景 Ф38mm 2.3kg ポンピングチューブとは? ・モルタル(砂+セメント+水)を流すホース 1.25m 土木・建築現場で使用 ボンビングチューブ

問題点

・流動性が良くない流体を流す→内面が削れ、短寿命

制約条件

・ポンプマシンに合ったホースを製造するため ホースの内径、外径、厚みの変更ができない

材料による変更で耐摩耗性の強化⇒高寿命化へ

3.製品特徴

内面ゴム:ホース最重要部位 耐摩耗性

補強層 :補強材(ポリエステル糸+ゴム)耐圧性

中間ゴム:層間の密着力を高める 密着性

外面ゴム:外側部位、使用環境によって選定

切断 断面図

流体が直接触れる内面ゴムにセルロースナノファイバーを配合し耐摩耗性を向上

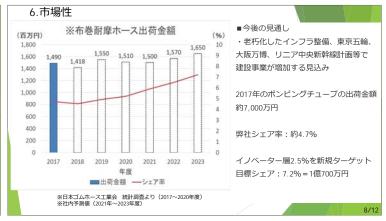
4.使用背景

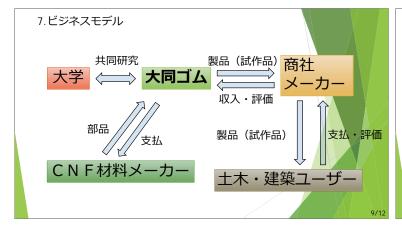
セルロースナノファイバー(CNF)の特徴

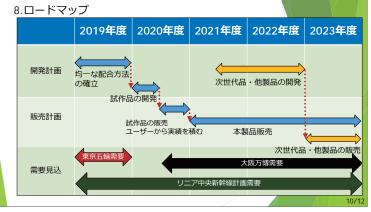
- ・植物繊維由来の素材(環境負荷が小さい)
- 軽量、高強度(鉄の5倍)
- ・様々な分野へ活用に向け検討中

サンプル	DIN摩耗試験 比摩耗体積(mm³)	テーバー摩耗試験 摩耗体積(mm²)	
CNF 0phr	174	48	
CNF 5phr	148 約15%減少	10 約20%減少	

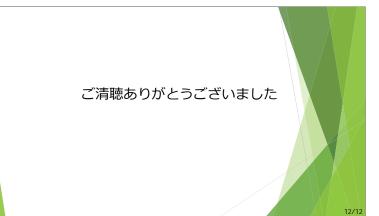
※長谷朝博、平瀬龍二、山下満、浜口和也 「セルロースナノファイバーとゴム材料と した環境配慮型超軽量・高機能シューズの


ゴムと配合すれば耐摩耗性アップが見込まれる


セルロースナノファイバーの課題

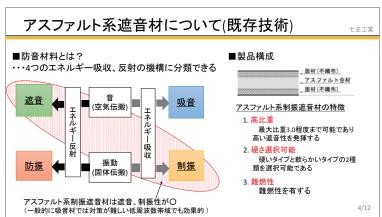

- ・研究開発に主に使用されてるCNFは、約90%以上が水分の水分散タイプ ⇒ゴムへ配合する際、乾燥が必要で手間と分散の均一化が課題

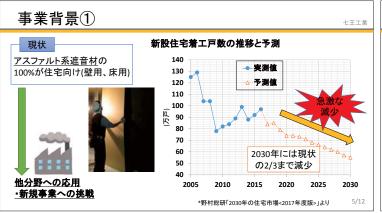
・セルロースナノファイバーの値段 (水分散タイプ:3,000円/kg) (粉末タイプ:2万円/kg)

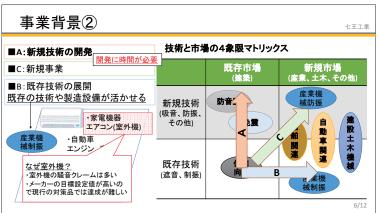

5.顧客ベネフィッ	\						
	価格	寿命	年間購入費 (マシン1台あたり)				
従来品	3,500円/本	約2日	437,500円				
新製品(目標値)	5,900円/本	約4日	368,750円				
効果	約1.7倍	2倍	-68,750円				
寿命は2 <mark>倍</mark> 、年間250日工事したとすると68,750円の経費削減メリット							
耐摩耗性向上により高寿命化 購入費の削減とそれに伴う交換作業 と廃棄コストの半減							

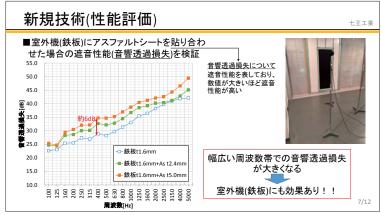
平成31年3月5日

空調機向けアスファルト制振材の事業化

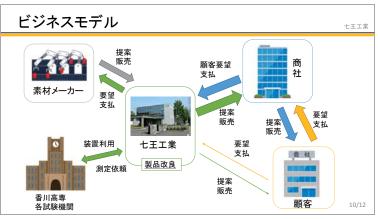

21世紀源内ものづくり塾 10期生 七王工業株式会社 細川 晃平

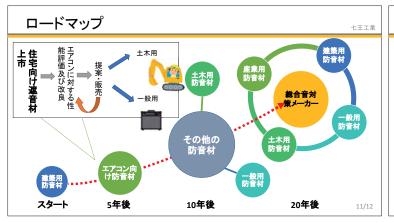

1/12


3/12


目次	七王工業
■会社概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	2/12

会社概要 七王工業 ■七王工業株式会社 設立年月日 昭和24年9月9日 所在地 本社:香川県善通寺市金蔵寺町180番地 営業所:東京、大阪、北海道 資本金 2,500万円 売上高 46億8,510万円(平成29年3月期) 製造品目 建築用防水紙類、遮音材、屋根葺き材、土木建築用目地材 関連団体 全日本アスファルト防水事業協同組合 ■当社の強み アスファルトのシート化技術で、困りごとを"防"ぐ技術のご提供 防音 防水





顧客ベネフィット 七王工業 項目 一般的制振材 インラインで貼合*1や、後エ 程での打ち抜き加工が可能。 ·納期〇、価格〇 メーカーとアッセンブリ業者が 別会社の場合が多い。 加工 複合化による高性能化可能 ·遮音性:大(比重:2.6~3.0) ·遮音性:小(比重:1.8~2.4) ・遮音〇(広範囲の周波数帯域) 小(低温) 大(中高温) ·制振性能: 大(低温) 小(中高温) 性能*2 ・制振性: ・制振○(中高温)△(低温) ・難燃性*3○ ・「防水性」、「電気絶縁性」など 材料 アスファルト ブチルゴム、PVC等 *1 貼りあわせる材料は、ロール状に限ります *2 遮音性能は音響透過損失、制振性能は損失係数で相対的に比較しています *3 難燃性はUL-94燃焼試験で相対的に比較しています。 8/12

延伸製法を利用した高強度多層フィルムの事業化計画

21世紀源内ものづくり塾10期生四国化工株式会社松浦亮2019年3月5日

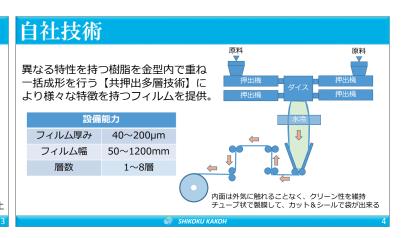
目次 ①会社概要 3 ②自社技術 4 ③新技術概要 5 ④顧客ニーズ 6~7 ⑤顧客ベネフィット 8 ⑥市場性 9 ⑦ビジネスモデル 10 ®ロードマップ 1 1 ⑨収支予測 12

SHINONII NVNOH

会社概要

所在地 香川県東かがわ市西山516番地1 設立 1983年4月11日 【36期目】

資本金2億2千万円従業員250名


事業内容 【共押出多層技術】製法を駆使し、分野の要求に合わせた

多層プラスチックフィルムを提供する。

食品分野:ガスバリア性 強度 電子分野:クリーン性 帯電防止

SHIKOKU KAKOH

新技術概要

熱可塑性プラスチックを、二次転移点以上の温度で引き伸ばし、引っ張り方向に分子を配向させる操作を【延伸】という。 分子配向の結果、延伸前に比べ様々な特性を得ることが出来る。

柔軟性に代わり 圧倒的な強度を得る

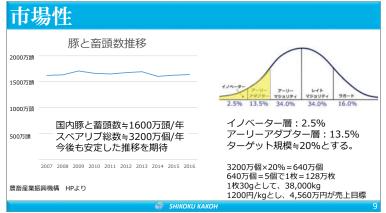
> 引張強度=3倍 突刺強度=6倍

々な特性を得ることが出来る。 従来のフィルム 720μm 100×100mm 延伸 80μm 300×300mm

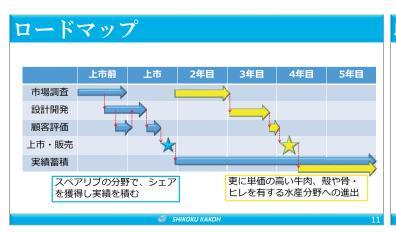
顧客ニーズ

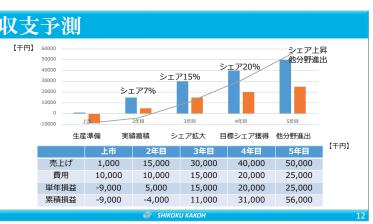
スペアリブ

あばら骨付きの豚肉で 脂肪分とコクに優れる 高単価部位



骨の先端が鋭利な形状となっており、包装材にとっては非常に厳しい内容物。 一方、顧客はこの高単価部位を、高価格帯で販売できる[チルド]状態で流通させたい。


SHIKOKU КАКОН



3.ものづくり講演会

(1) 演題

人生のターニングポイントと経営観

(2) 講師紹介

氏 名●

板野 司(いたの つかさ)氏

出身●

1963年3月 香川県さぬき市

経 歴 ●

1993年:(株)スワニーへ入社

2009年:代表取締役社長に就任

2013年:第二回「四国でいちばん大切にしたい会社」大賞受賞

講演要旨●

1985年バブルの真っ只中に高松のアパレル商社に就職。好きなファションビジネスの業界で8年間を過ごす。入社以来トップセールスマンとして毎年売上目標を達成するも、7年目で大きな挫折を味わうことになる。その事が私の人生を振り返ってみると大きなターニングポイントとなった。

その後、ご縁を頂いて株式会社スワニーに入社し、15年後に代表取締役に就任した。今でこそグローカルカンパニーの社長として充実した日々を送っているが、入社以来アウェー感満載で常に不安や恐れの中にいた自分がどのようにしてそこから抜け出し、どのように周りを変えていったのか。自らの体験を赤裸々に語りつつ、私の経営観も交えてお話したいと思います。

1993年、現三好会長の三女と結婚し(株)スワニー入社、2009年に代表取締役社長に就任し現在に至る。

同社は、手袋の産地として知られる東かがわ市で 1937 年に創業、各種手袋とキャスター付きカバンを製造・販売するグローカル企業。米国では 8 年連続で SWANY ブランドのスキー手袋が NO.1 ブランドとして認知され、キャスター付きカバンは、多くの高齢者からの支持を集め、年間約 7000 通の「ありがとう」の気持ちが綴られたアンケート葉書が返信されている。

社員自らプロジェクトチームをつくり、会社にとって大切にすべき価値観を 8項目の「スワニークレド」にまとめ、全社員に経営理念を浸透させ、感謝の 気持ちをありがとうカードでメッセージにして伝え合い、社員間の関係性の質 向上に努めている。自ら「社員長」と名乗り、社員の自主性を尊重する板野社 長の姿勢が、社員の自立性や自らが考える力を育てている。

また、リフレッシュ休暇制度、社員持ち株制度、10の社内同好会など、社員 を大切にする取組みを積極的に推進しており社員満足度も高い。

2013年第二回「四国でいちばん大切にしたい会社」大賞受賞。

現在、日本手袋工業組合副理事、東かがわ国際フォーラム会長、東かがわ市 商工会工業振興委員長等の公職を務めている。

ご清聴ありがとうございました。

